On the maximality of subdiagonal algebras

نویسنده

  • Quanhua Xu
چکیده

We consider Arveson’s problem on the maximality of subdiagonal algebras. We prove that a subdiagonal algebra is maximal if it is invariant under the modular group of a faithful normal state which is preserved by the conditional expectation associated with the subdiagonal algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect algebras with the maximality property

The maximality property was introduced in [9] in orthomodular posets as a common generalization of orthomodular lattices and orthocomplete orthomodular posets. We show that various conditions used in the theory of effect algebras are stronger than the maximality property, clear up the connections between them and show some consequences of these conditions. In particular, we prove that a Jauch–P...

متن کامل

Conjugate Operators for Finite Maximal Subdiagonal Algebras

Let M be a von Neumann algebra with a faithful normal trace τ , and let H∞ be a finite, maximal, subdiagonal algebra of M. Fundamental theorems on conjugate functions for weak∗-Dirichlet algebras are shown to be valid for noncommutative H∞. In particular the conjugation operator is shown to be a bounded linear map from Lp(M, τ) into Lp(M, τ) for 1 < p < ∞, and to be a continuous map from L1(M, ...

متن کامل

Relating maximality-based semantics to action refinement in process algebras

This paper extends to process algebras the notion of maximality which has initially been introduced for prime event structures and P/T nets and shows how this notion of maximality may be used for deening an adequate semantics of Basic LOTOS able to support action reenement. Such an approach appears to be more convenient than the classical ST-semantics where non atomic actions are split into sta...

متن کامل

On certain maximality principles

‎We present streamlined proofs of certain maximality principles studied by Hamkins‎ ‎and Woodin‎. ‎Moreover‎, ‎we formulate an intermediate maximality principle‎, ‎which is‎ ‎shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$‎.

متن کامل

Hilbert Transform Associated with Finite Maximal Subdiagonal Algebras

Let M be a von Neumann algebra with a faithful normal trace τ , and let H∞ be a finite, maximal, subdiagonal algebra of M. Fundamental theorems on conjugate functions for weak∗-Dirichlet algebras are shown to be valid for non-commutative H∞. In particular the Hilbert transform is shown to be a bounded linear map from Lp(M, τ) into Lp(M, τ) for 1 < p < ∞, and to be a continuous map from L1(M, τ)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005